Used By¶
D-Claw has been used in many scientific studies. This page is intended as the most up-to-date reference of these studies. If you used D-Claw in a publication and it is not listed, please send us a message so we can add your study.
2024¶
Barnhart, K.R., Miller, C.R., Rengers, F.K., and Kean, J.W., 2024, Evaluation of debris-flow building damage forecasts: Natural Hazards and Earth System Sciences, v. 24, no. 4, p. 1459–1483, https://doi.org/10.5194/nhess-24-1459-2024.
Iverson, R.M., George, D.L., 2024, Numerical modeling of debris flows: A conceptual assessment. In: Jakob, M., McDougall, S., Santi, P. (eds) Advances in Debris-flow Science and Practice. Geoenvironmental Disaster Reduction. Springer, Cham. https://doi.org/10.1007/978-3-031-48691-3_5.
Kafle, L., Xu, W.-J., and Nagel, T., 2024, Numerical investigation of a potential landslide-induced tsunami at the Suofengying reservoir in China: Landslides, v. 21, no. 5, p. 1083–1093, https://doi.org/10.1007/s10346-024-02217-9.
Xu, Y., Bürgmann, R., George, D. L., Fielding, E. J., Solis-Gordillo, G. X., and Yanez-Borja, D. B., 2024, Forecasting inundation of catastrophic landslides from precursory creep: Geophysical Research Letters, 51, e2024GL110210, https://doi.org/10.1029/2024GL110210.
2023¶
Barnhart, K.R., and Kean, J.W., 2023, Runout model evaluation based on back-calculation of building damage: E3S Web of Conferences, v. 415, 04002, p. 4, https://doi.org/10.1051/e3sconf/202341504002.
Barnhart, K.R., Jones, R. P., George, D. L., Rengers, F. K., and Kean, J. W., 2023, Forecasting the runout of postfire debris flows: E3S Web of Conferences, v. 415, 07001, p. 4, https://doi.org/10.1051/e3sconf/202341507001.
Jones, R.P., Rengers, F.K., Barnhart, K.R., George, D.L., Staley, D.M., and Kean, J.W., 2023, Simulating Debris Flow and Levee Formation in the 2D Shallow Flow Model D‐Claw: Channelized and Unconfined Flow: Earth and Space Science, 10, e2022EA002590, http://doi.org/10.1029/2022EA002590.
2022¶
Barnhart, K.R., Collins, A.L., Avdievitch, N.N., Jones, R.P., George, D.L., Coe, J.A., and Staley, D.M., 2022, Simulated inundation extent and depth in Harriman Fjord and Barry Arm, western Prince William Sound, Alaska, resulting from the hypothetical rapid motion of landslides into Barry Arm Fjord, Prince William Sound, Alaska: U.S. Geological Survey data release, https://doi.org/10.5066/P9QGWH9Z.
George, D.L., Iverson, R.M., and Cannon, C.M., 2022, Modeling the dynamics of lahars that originate as landslides on the west side of Mount Rainier, Washington: U.S. Geological Survey Open-File Report 2021–1118, 54 p., https://doi.org/10.3133/ofr20211118.
Mitchell, A., Allstadt, K. E., George, D., Aaron, J., McDougall, S., Moore, J., and Menounos, B., 2022, Insights on multistage rock avalanche behavior from runout modeling constrained by seismic inversions: Journal of Geophysical Research: Solid Earth, 127, e2021JB023444, https://doi.org/10.1029/2021JB023444.
2021¶
Barnhart, K.R., Jones, R.P., George, D.L., McArdell, B.W., Rengers, F.K., Staley, D.M., and Kean, J.W., 2021, Multi‐Model Comparison of Computed Debris Flow Runout for the 9 January 2018 Montecito, California Post‐Wildfire Event: Journal of Geophysical Research: Earth Surface, v. 126, no. 12, p. e2021JF006245, https://doi.org/10.1029/2021JF006245.
Barnhart, K.R., Jones, R.P., George, D.L., Coe, J.A., and Staley, D.M., 2021, Preliminary assessment of the wave generating potential from landslides at Barry Arm, Prince William Sound, Alaska: U.S. Geological Survey Open-File Report, no. 2021–1071, https://doi.org/10.3133/ofr20211071.
Barnhart, K.R., Jones, R.P., George, D.L., Coe, J.A., and Staley, D.M., 2021, Select model results from simulations of hypothetical rapid failures of landslides into Barry Arm, Prince William Sound, Alaska: U.S. Geological Survey data release, https://doi.org/10.5066/P9XVJDNP.
Barnhart, K.R., Jones, R.P., George, D.L., Coe, J.A., Staley, D.M., Haeussler, P.J., and Labay, K., 2021, Simulated inundation extent and depth at Whittier, Alaska resulting from the hypothetical rapid motion of landslides into Barry Arm Fjord, Prince William Sound, Alaska: U.S. Geological Survey data release, https://doi.org/10.5066/P9IAPCZ5.
Denlinger, R.P., George, D.L., Cannon, C.M., O’Connor, J.E., and Waitt, R.B., 2021, Diverse cataclysmic floods from Pleistocene glacial Lake Missoula: Untangling the Quaternary Period—A Legacy of Stephen C. Porter, Richard B. Waitt, Glenn D. Thackray, Alan R. Gillespie, https://doi.org/10.1130/2021.2548(17)
Xu, Y., George, D.L., Kim, J., Lu, Z., Riley, M., Griffin, T. and de la Fuente, J., 2021, Landslide monitoring and runout hazard assessment by integrating multi-source remote sensing and numerical models: an application to the Gold Basin landslide complex, northern Washington. Landslides 18, 1131–1141, https://doi.org/10.1007/s10346-020-01533-0.
2019¶
George, D.L., Iverson, R.M., and Cannon, C.M., 2019, Seamless numerical simulation of a hazard cascade in which a landslide triggers a dam-breach flood and consequent debris flow: Association of Environmental and Engineering Geologists; special publication, http://dx.doi.org/10.25676/11124/173208.
2018¶
Navarro, M., Le Maître, O.P., Hoteit, I., George, D.L., Mandli, K.T., and Knio, O.M., 2018, Surrogate-based parameter inference in debris flow model: Computational Geosciences, v. 22, no. 6, p. 1447–1463. https://doi.org/10.1007/s10596-018-9765-1.
2017¶
George, D.L., Iverson, R.M., and Cannon, C.M., 2017, New methodology for computing tsunami generation by subaerial landslides: Application to the 2015 Tyndall Glacier landslide, Alaska: Geophysical Research Letters, v. 44, no. 14, p. 7276–7284. https://doi.org/10.1002/2017GL074341
2016¶
Iverson, R.M., and George, D.L., 2016, Modelling landslide liquefaction, mobility bifurcation and the dynamics of the 2014 Oso disaster: Geotechnique, v. 66, no. 3, p. 13, https://doi.org/10.1680/jgeot.15.LM.004.
Iverson, R.M., George, D.L., and Logan, M., 2016, Debris flow runup on vertical barriers and adverse slopes: Journal of Geophysical Research: Earth Surface, v. 121, no. 12, p. 2333–2357.
https://doi.org/10.1002/2016JF003933
2015¶
Iverson, R.M., George, D.L., Allstadt, K., Reid, M.E., Collins, B.D., Vallance, J.W., Schilling, S.P., Godt, J.W., Cannon, C.M., Magirl, C.S., Baum, R.L., Coe, J.A., Schulz, W.H., and Bower, J.B., 2015, Landslide mobility and hazards: implications of the 2014 Oso disaster: Earth and Planetary Science Letters, v. 412, p. 197–208, https://doi.org/10.1016/j.epsl.2014.12.020.
2014¶
George, D.L., and Iverson, R.M., 2014, A depth-averaged debris-flow model that includes the effects of evolving dilatancy—II. Numerical predictions and experimental tests: Proceedings of the Royal Society of London. Series A, v. 470, no. 2170, p. 20130820, https://doi.org/10.1098/rspa.2013.0820.
Iverson, R.M., and George, D.L., 2014, A depth-averaged debris-flow model that includes the effects of evolving dilatancy—I. Physical basis: Proceedings of the Royal Society of London. Series A, v. 470, no. 2170, p. 20130819, https://doi.org/10.1098/rspa.2013.0819.
2013¶
George, D.L., 2013, Modeling Hazardous, Free-Surface Geophysical Flows with Depth-Averaged Hyperbolic Systems and Adaptive Numerical Methods, in Dawson, C. and Gerritsen, M. eds., Computational Challenges in the Geosciences: Springer New York, New York, NY, p. 25–48. https://doi.org/10.1007/978-1-4614-7434-0_2.